
169

Eliminating the I/O Bottleneck in Large Web Caches

Alex Rousskov and Valery Soloviev
Computer Science Department
North Dakota State University

Fargo, ND 58105-5164
frousskov,solovievg@plains.NoDak.edu

Abstract

This paper presents a technique for eliminating the disk bottleneck in large Web
Caches. Our approach objective is twofold. First, the presented algorithm substantially
decreases disk activity during peak server load. Second, it maintains the hit ratio at
the level of traditional caching policies. We evaluate the performance of the algorithm
using trace driven simulations based on access logs from several top-level Web caches.

1 The Problem

Caching servers orcaching proxiesare now standard tools for handling the exponential
growth of the Web traffic. Individual caching proxies can boost their performance by
joining cachehierarchies. Several large hierarchies orcache meshesare currently oper-
ational [1, 2].

In a cache mesh, intermediate servers have to serve data to all proxies they cooperate with.
To be effective, an intermediate cache server must handle gigabytes of traffic per day and
maintain a large storage of cached documents. The traffic volume is rapidly increasing with
the Web growth and as new servers join the hierarchy. Due to the system overhead, it may
take about four disk I/Os to cache or retrieve a single document. It is no surprise that the
disk subsystem becomes a serious bottleneck in a large caching proxy [3, 4].

In the nearest future, multimedia data such as audio and video clips are expected to become
a major part of the Internet traffic. Caching proxies could be naturally used for caching and
smoothingthe delivery of delay-sensitive media. This new media, along with the Web traf-
fic growth, will increase the burden on caching proxies, especially on their disk subsystem.

Current caching schemes rely on algorithms originally designed forin-memorycaches in
database and file systems [5, 6]. Thus, traditional algorithms ignore performance problems
associated with maintaining largedisk-residentarchives of cached documents.

This paper demonstrates that traditional caching algorithms create excessive load on a
caching server and do not scale with the increase in the volume of the Web traffic. We
present a new caching algorithm designed to minimize I/O activity on a server while main-
taining the hit ratio at the level of traditional algorithms.



170

2 Traditional Approach

Many Web caching algorithms have been proposed. Most algorithms adopt techniques
found in database and file systems [5, 6]. A few recent studies take the specifics of the
Web traffic into account [7]. All existing algorithms optimize the hit ratio and ignore I/O
activity.

A common pattern among traditional algorithms is to storeeveryincoming cachable docu-
ment while purging the previously cached ones to free disk space. Thus, there is a persistent
flow of data to the disk-resident cache. Clearly, the volume of disk traffic is proportional to
the Web traffic. That is, when the number of requests to a caching proxy increases, so does
the number of documents written to the disk cache. Disk queues grow exponentially and
so does disk response time [4]. This results in an I/O bottleneck system.

The I/O bottleneck leads to the performance degradation of the entire caching proxy. When
the disk subsystem cannot handle incoming requests, the response time of a single request
increases. A longer response time means more concurrent requests in the system. The
latter leads to shortages in buffer memory, CPU slices, file descriptors, etc. As the queuing
theory suggests, these resource shortages increaseexponentiallywhen the server load is
high. Thus, the performance problems are most severe during the peak server load.

To compensate for the increase in the load during peak hours, the system must have exces-
sive disk, memory, and CPU resources. These resources are not utilized for the rest of the
time.

3 Proposed Algorithm

This section presents an algorithm designed to eliminate the I/O bottleneck in large caching
proxies. Our design objective is twofold. First, we want to substantially decrease disk
activity during peak server load. Second, we want to maintain the hit ratio at the level of
other caching algorithms.

The traditional approach is to writeeverynew cachable document to disk. In a large hier-
archy, the majority of Web documents are requested from an intermediate caching proxy
only once. Thus, these documents are written to the disk but are never read back. If we
could predict future requests, we would never write such documents and would drastically
reduce disk activity.

A precise prediction of the Web traffic is, of course, not feasible. However, our analysis
shows that most documents requested today were requested in the past as well. Thus, by
maintaining anactive setof previously requested documents, we could “predict” the future
traffic. We can rebuild the active set only once per day when the server load is negligible.
We proposeStatic Caching algorithm that works as follows.



171

� Once per day, when the server load is negligible, scan thelog fileof a caching proxy
to determine a set of URLs (names) of previously accessed documents.

� Form an active set by selecting URLs of mostvaluabledocuments among those
scanned in the first step. A value of a document is determined by its contribution
towards the total number of hits weighted by the document size. Such a value would
guarantee an optimal hit ratio if the future traffic matches the past precisely.

� If a document from the active set is not currently cached, then it can be either
prefetched when the active set is formed or fetched during the first corresponding
request. We assume the first scenario.

� During the day, the active set of URLs remains unchanged orstatic. A request to a
cached document from the set produces ahit. A request to a document outside of the
active set gives amiss.

Static Caching shifts all major disk and CPU activities from peak load hours to the
time when a caching proxy is idle. During the day, the disk activity is triggered byhitsand
updatesof active documents only. The former are essential to maintain a high hit ratio. The
latter are rare and have negligible impact. Thus, there is no excessive disk activity during
peak load.

As a side effect, the CPU load is minimal during peak hours. A single hash table lookup
is required to process a request. No work on maintaining the hash table or any other meta
data is required. A single hash table is all that has to be stored in memory buffer. Thus,
memory requirements are also minimal. Other benefits of the approach include a potential
for exchange of active sets among cooperative caching proxies to optimize the cooperation
and for compression of cached documents.

4 Performance Analysis

Using trace driven simulations, we have compared the performance of theStatic algo-
rithm with theLRU-TH algorithm [8]. LRU-TH and its variations are traditionally used
in caching proxies [9, 3]. Due to cache sizes exceeding daily traffic volume, many other
known algorithms will mimic the behavior ofLRU-TH. In our previous work withprimary
Web servers, we observed a similar performance of many algorithms on large caches [10].

We used traces from sixroot servers of a large cache hierarchy maintained by a National
Laboratory for Applied Network Research [1]. Traces were produced by the Squid caching
proxy, a freeware successor of Harvest [9]. Squid is currently the best freeware proxy
accounting for about 70% of all European caches [11]. Traces’ duration was about two
months. Each server studied has distinct traffic patterns. For example, theSV server han-
dled mostly international traffic and processed more than 6 GB per day (more than 600,000
requests). On the other hand, theLJ server had an open access list and processed almost 2
GB per day (about 150,000 requests). NLANR servers had 6-8GB allocated for disk cache.



172

For each URL request, Squid logs the time of the request, the URL, the size of the docu-
ment, and the performed action [1]. The last modification date of a document is not logged,
but updates can be usually detected by analyzing the action field. Furthermore, for every
request, we compared the size of the requested file with the one cached by an algorithm. A
change in the file size indicates a modification and results in a “miss”.

0

10

20

30

40

50

100 200 500 1000 2000 5000 10000

h
i
t
 
r
a
t
i
o
,
 
%

cache size (MB)

sv: ideal
static
lru-th

0

10

20

30

40

50

100 200 500 1000 2000 5000 10000

h
i
t
 
r
a
t
i
o
,
 
%

cache size (MB)

lj: ideal
static
lru-th

Figure 1:Static vs. LRU-TH onSVandLJ servers

Figure 1 compares the performance of theStatic algorithm with theLRU-TH algorithm
on theSV andLJ servers. Performance on other servers studied is similar.LRU-TH is
shown with thebestthreshold for each cache size. Solid lines show an upper bound on
Static performance in a hypothetical case when the future is 100% predictable (i.e., we
know whatold URLs will be accessed again; there are stillnewURLs that can be cached
by LRUbut cannot be cached byStatic ).

Clearly, elimination of excessive I/O load byStatic did not sacrifice the hit ratio. We
also measured the number of disk I/Os produced by the algorithms.Static consistently
reduced daily disk traffic by about 35%. The savings would become even bigger when only
peak load is considered. Such a reduction would eliminate disk bottleneck in a real proxy
environment.

5 Conclusions and Future Work

The expansion of the Web and increasing presence of multimedia information result in the
I/O bottleneck on caching proxies. Traditional caching algorithms ignore the performance
of the I/O subsystem and do not scale with the increase in traffic volume and intensity.
We have presented theStatic Caching algorithm which focuses on saving disk band-
width. Static Caching eliminates the I/O bottleneck while preserving a high hit ratio.



173

Currently, we are investigating the application ofStatic algorithm toleaf proxy caches
installed in large universities and corporations. Leaf caches handle moredynamictraffic
than intermediate caching proxies. An interestingsymbiosisof the Static algorithm
and a traditional dynamic caching policy may be needed to maintain a high hit ratio with
minimum resource requirements.

Acknowledgements

This work was supported, in part, by NSF grantsOSR-95-53368 andRIA IRI-94-09845 .

References

[1] National Laboratory for Applied Network Research.
the lab:http://www.nlanr.net/ , cache project:http://ircache.nlanr.net/

[2] Europe Caching Hierarchy
http://www.terena.nl/projects/choc/

[3] Carlos Maltzahn, Kathy Richardson, and Dirk Grunwald. Performance Issues of Enterprise Level Web
Proxies.In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, Seattle, June 1997
http://www.cs.Colorado.edu/ carlosm/sigmetrics.ps.gz

[4] Alex Rousskov and Valery Soloviev. On Performance of Caching Proxies. Submitted for publication.
http://www.cs.ndsu.nodak.edu/ �rousskov/research/cache/squid/profiling/papers/

[5] E.O’Neil, P. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm For Database Disk
Buffering. In Proceedings of the ACM SIGMOD Int. Conf. on Management of Data, Washington, May
1993.
http://paris.cs.uni-sb.de/public html/papers/LRU-k report.ps.Z

[6] R. Karedla, J. Love, and B. Werry. Caching Strategies to Improve Disk Performance.IEEE Computer,
pp. 38-46, v.27(3), March 1994.

[7] J. Pitkow and M. Recker. A Simple Yet Robust Caching Algorithm Based on Dynamic Access Patterns.
In Proceedings of the Second International WWW Conference, Chicago, October 1994.
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/pitkow/caching.html

[8] M. Abrams, C. Stanbridge, G. Abdulla, S. Williams, and E. Fox. Caching Proxies: Limitations and
Potentials.In Proceedings of the Fourth International Conference on the WWW, Boston, December
1995.
http://ei.cs.vt.edu/ �succeed/WWW4/WWW4.html

[9] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrel. A Hierarchical Internet Object
Cache.USENIX Annual Technical Conference, San Diego, January 1996.
http://excalibur.usc.edu/cache-html/cache.html

[10] Igor Tatarinov, Alex Rousskov, and Valery Soloviev. Static Caching in Web Servers. In proceedings of
the IEEE International Conference on Computer Communications and Networks, Las Vegas, September
1997.
http://www.cs.ndsu.nodak.edu/ �tatarino/pubs/static.ps

[11] European Caching Task Force Survey Results:
http://w3cache.icm.edu.pl/survey/results/



174


